Learning Overcomplete Representations from Distributed Data: A Brief Review

نویسنده

  • Haroon Raja
چکیده

Most of the research on dictionary learning has focused on developing algorithms under the assumption that data is available at a centralized location. But often the data is not available at a centralized location due to practical constraints like data aggregation costs, privacy concerns, etc. Using centralized dictionary learning algorithms may not be the optimal choice in such settings. This motivates the design of dictionary learning algorithms that consider distributed nature of data as one of the problem variables. Just like centralized settings, distributed dictionary learning problem can be posed in more than one way depending on the problem setup. Most notable distinguishing features are the online versus batch nature of data and the representative versus discriminative nature of the dictionaries. In this paper, several distributed dictionary learning algorithms that are designed to tackle different problem setups are reviewed. One of these algorithms is cloud K-SVD, which solves the dictionary learning problem for batch data in distributed settings. One distinguishing feature of cloud K-SVD is that it has been shown to converge to its centralized counterpart, namely, the K-SVD solution. On the other hand, no such guarantees are provided for other distributed dictionary learning algorithms. Convergence of cloud K-SVD to the centralized K-SVD solution means problems that are solvable by K-SVD in centralized settings can now be solved in distributed settings with similar performance. Finally, cloud K-SVD is used as an example to show the advantages that are attainable by deploying distributed dictionary algorithms for real world distributed datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Lewicki-Sejnowski Gradient for Learning Overcomplete Representations

Overcomplete representations have greater robustness in noise environment and also have greater flexibility in matching structure in the data. Lewicki and Sejnowski (2000) proposed an efficient extended natural gradient for learning the overcomplete basis and developed an overcomplete representation approach. However, they derived their gradient by many approximations, and their proof is very c...

متن کامل

Learning Nonlinear Overcomplete Representations for Efficient Coding

We derive a learning algorithm for inferring an overcomplete basis by viewing it as probabilistic model of the observed data. Overcomplete bases allow for better approximation of the underlying statistical density. Using a Laplacian prior on the basis coefficients removes redundancy and leads to representations that are sparse and are a nonlinear function of the data. This can be viewed as a ge...

متن کامل

Metrics for Multivariate Dictionaries

Overcomplete representations and dictionary learning algorithms kept attracting a growing interest in the machine learning community. This paper addresses the emerging problem of comparing multivariate overcomplete representations. Despite a recurrent need to rely on a distance for learning or assessing multivariate overcomplete representations, no metrics in their underlying spaces have yet be...

متن کامل

Overcomplete Representation of Sensor Network Data by Distributed System Modeling

This paper presents a technique for representing distributed data of sensor networks. The approach is based on a general distributed regression framework that models sensor data by fitting a global function to each of the local measurements. The presented method explores the possible extensions of this distributed regression, by using more complex signal representations. In order to reduce the ...

متن کامل

When are Overcomplete Representations Identifiable? Uniqueness of Tensor Decompositions Under Expansion Constraints

Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime. While general overcomplete admixtures are not identifiable, we establish {\em generic} ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016